
RYU SDN Framework Assignment

Ramaguru R

CB.EN.D*CYS21002-PT

28-Dec-2021

RYU (is the name of the Japanese Fictional Character, meaning “FLOW”) is a component-based

Open-Source and Python-based Software-Defined Networking (SDN) Framework. RYU supports

various protocols like

• OF-Config, which is a protocol designed for OpenFlow switch management. It performs a

collection of the settings and status of the logical switches, ports, and queues as defined in

NETCONF (RFC 6241) schema.

• XFlow, which consists of NetFlow and sFlow. sFlow is primarily used to parse an sFlow packet

from Open vSwitch. NetFlow and sFlow protocols are primarily network traffic management

tools used for packet sampling and aggregation.

• OVSDB, which is primarily used to permit remote management of network nodes.

RYU Components:

RYU Framework consists of many components like Executables, Base Components, Open Flow

Controllers and Encoder/Decoders. For development activities we also have pre-built

applications, libraries and third-party library support.

• bin/ryu-manager – Main Executable file

• ryu.base.app_manager – The central management file

• ryu.controller.controller - The main component of OpenFlow Controller handles

connections from switches; Generate and route events to appropriate entities.

• ryu.controller.dpset - manages the switches

• ryu.controller.ofp_event – OpenFlow event definitions

• ryu.controller.ofp_handler – OpenFlow Handlings

• ryu.ofproto.ofproto_v1_x – OpenFlow Definitions

• ryu.ofproto.ofproto_v1_x_parser – Encoder/Decoder for OpenFlow

Event Handler:

The different event handlers as available in RYU is shown below in Table 1.

RYU Reference File Action

ryu.controller.handler.HANDSHAKE_DISPATCHER Exchange of HELLO message

ryu.controller.handler.CONFIG_DISPATCHER Waiting to receive Switch Features

message

ryu.controller.handler.MAIN_DISPATCHER Normal status

ryu.controller.handler.DEAD_DISPATCHER Disconnection of connection
Table. 1: Event Handler in RYU

Match:

Match field defines what fields should be looked for by the RYU application to decide on the

actions to be taken. Below table 2 shows some of the parameters used for match [1].

Match field name Explanation

in_port Port number of receiving port

in_phy_port Physical port number of receiving port

metadata Metadata used to pass information between tables

eth_dst Destination MAC address of Ethernet

eth_src Source MAC address of Ethernet

eth_type Frame type of Ethernet

vlan_vid VLAN ID

vlan_pcp VLAN PCP

ip_dscp IP DSCP

ip_ecn IP ECN
Table. 2: Match Fields in OpenFlow Protocol

Actions:

Action fields define the packet forwarding to be used in Packet-Out and Flow Mod messages

[1].

Value Explanation

OFPP_IN_PORT Forwarded to the receive port

OFPP_TABLE Applied to the first flow table.

OFPP_NORMAL Forwarded by the L2/L3 switch function

OFPP_FLOOD Flooded to all physical ports of the VLAN except

blocked ports and receiving ports

OFPP_ALL Forwarded to all physical ports except receiving

ports

OFPP_CONTROLLER Sent to the controller as a Packet-In message.

OFPP_LOCAL Indicates a local port of the switch

OFPP_ANY Meant to be used as a wild card when you select

a port using Flow Mod (delete) or Stats Requests

messages, and it’s not used in packet forwarding.

Table. 3: Actions in OpenFlow Protocol

GUI Topology Viewer:

To provide visual representation of the mininet created, RYU framework supports GUI

Topology Viewers.

Command:

./bin/ryu run --observe-links ryu/app/gui_topology/gui_topology.py

This starts a server and the topology can be viewed at localhost in port number 8080.

Fig.1: RYU GUI Topology Viewer

Applications:

RYU SDN Libraries allows us to create multiple applications. Some are listed below:

• Hub

• Spanning Tree

• L2 Switch

• L3 Switch

• Router

• Firewall

Programming Model:

The RYU Application Programming Model that serves as basis for any application written using

RYU SDN Framework as shown in Fig. 2 [2].

The user logic is written as the application. The communication between the applications is

performed through events which is maintained by a queue within each application. RYU uses

multi-thread using evenlets. A thread starts the event loop. Whenever an event occurs of specified

type, the event handler is called from the application’s event loop. Event handlers are responsible

for handling events within the application. An Event handler is defined by decorating application

class method with an ryu.controller.handler.set_ev_cls decorator.

Fig.2: RYU Application Programming Model

REST API Support:

The Framework also supports API over REST.

Examples application written:

1. L2 Switch

Fig.3: L2 Switch Running in Verbose Mode

2. On Pinging the node h2 from h1 in the mininet.

3. Events can be observed.

Fig.4: L2 Switch Event – OFPPacketIn

References:

[1] OpenFlow Protocol Action. https://osrg.github.io/ryu-book/en/html/openflow_protocol.html#match

[1] RYU SDN Framework Architecture. https://osrg.github.io/ryu-book/en/html/arch.html

https://osrg.github.io/ryu-book/en/html/openflow_protocol.html#match
https://osrg.github.io/ryu-book/en/html/arch.html

