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Abstract: Machine learning and blockchain are two of the most notable technologies of recent years. The
first is the foundation of artificial intelligence and big data analysis, and the second has significantly
disrupted the financial industry. Both technologies are data-driven, and thus there are rapidly growing
interests in integrating both for more secure and efficient data sharing and analysis. In this article, we review
existing research on combining machine learning and blockchain technologies and demonstrate that they
can collaborate efficiently and effectively. In the end, we point out some future directions and expect more
research on deeper integration of these two promising technologies. The Canadian Journal of Statistics 49:
1364–1382; 2021 © 2021 Statistical Society of Canada
Résumé: L’apprentissage machine et les chaı̂nes de blocs sont deux technologies récentes et remarquables.
Alors que la première constitue les assises de l’intelligence artificielle et de l’analyse des mégadonnées,
la deuxième a perturbé substantiellement l’industrie financière. Les deux technologies étant axées sur les
données, il existe un intérêt croissant pour leur intégration afin d’améliorer l’efficacité et la sécurité du
partage et de l’analyse de données. Les auteurs font une revue de la recherche portant sur la combinaison
de l’apprentissage machine avec les chaı̂nes de blocs, puis constatent que ces technologies s’harmonisent
de façon efficace. Ils concluent en identifiant de futurs sujets de recherche et s’attendent à davantage de
recherche pour une intégration plus complète des deux technologies prometteuses. La revue canadienne de
statistique 49: 1364–1382; 2021 © 2021 Société statistique du Canada

1. INTRODUCTION

A blockchain is a shared, distributed public ledger that stores transaction data in a chain
of sequential blocks (Dinh & Thai, 2018). The data (block) are time-stamped and validated
before being added to the chain. Each block contains information from previous blocks. The
mathematical structure of the blockchain for storing data makes it nearly impossible to fake
(MIT Technology Review Editors, 2018). Thanks to the legacy of cryptocurrency, the term
“blockchain” has transformed from a term in cryptography to a buzz word. Many people believe
that cryptocurrency is blockchain. This is incorrect. While blockchain is the foundation of
cryptocurrency, the applications of blockchain technology are much wider. Scenarios involving
the validation, auditing, and sharing of data can all consider applying blockchains.
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In this article, we review existing research on combining blockchain and machine learning
and demonstrate that they can collaborate efficiently and effectively. “Machine learning” is a
general terminology that includes a variety of methods, such as machine learning, deep learning,
and reinforcement learning. These methods are the core technology in big data analysis. As a
distributed and append-only ledger system, blockchain is a natural tool for sharing and handling
big data from various sources through the incorporation of smart contracts (i.e., a piece of
code that will execute automatically in certain conditions). More specifically, blockchain can
preserve data security and encourage data sharing when we train and test machine learning
models. Also, blockchain can be utilized for distributing computing powers, building Internet of
Things (IoT) networks, and developing online predictive models with various sources of data.
This is especially important for deep learning procedures that require tremendous amounts of
computational power. On the other hand, blockchain systems generate huge amounts of data from
different sources, and the corresponding distributed systems are harder to monitor and control
than centralized ones. Efficient data analysis and forecasting of system behaviours are critical
for optimal blockchain mechanism designs. In addition, machine learning can facilitate the
data verification process and the identification of malicious attacks and dishonest transactions
in a blockchain. Interdisciplinary research on combining the two technologies is of great
potential.

In this article, we review articles that either use machine learning techniques to study the
blockchain system or structure or implement blockchain techniques to improve machine learning,
e.g., through collaborative or distributed learning. The reviewed articles are summarized in Table
1. Articles that apply machine learning and blockchain techniques separately are not included in
this article but are listed in Table 2. We first review basic blockchain structure and terminology in
Section 2. This article is by no means exhaustive, but sufficient for Sections 3–5, which introduce
how different machine learning methods can be incorporated into blockchain systems. Our work
is concluded in Section 6 with a discussion of potential research directions and challenges that
may arise from ongoing and future fusion of machine learning and blockchain.

2. REVIEW OF BLOCKCHAIN

A blockchain, literally speaking, is just a chain of digital blocks. Each block contains a certain
amount of data, and the chain connects these data to form a distributed database. A node is
a device that stores a full copy of the transaction history of the blockchain. A newly created
block includes multiple transactions collected from nodes and broadcasts to every node on the
network. The new block can be accepted and added to the blockchain by nodes that have the
same consensus protocol. Each added block includes the information of the previous block in
the chain. Hence, if a block is changed, all blocks before this block will be invalid as well.
The strategies used to reach agreement with the new block (consensus) vary between different
types of blockchain. The mathematical structure of a blockchain implies two essential properties:
(i) the data (in a block) are immutable (MIT Technology Review Editors, 2018) and (ii) the
distributed network, through consensus, allows users to communicate directly with each other
and download a copy of the current ledger, which means that there is continuous monitoring and
redundancy of the data in the network. Therefore, the blockchain is more robust to individual
outrage and attacks.

Depending on who can access the blockchain and who can validate the data, the blockchain
can be classified into public chains, private chains, and consortium chains (Zheng et al., 2018a,
2018b). A comparison of these three different types of blockchains is shown in Table 3.

In what follows, we use the Bitcoin system, which is the most well-known blockchain
application, as an example to demonstrate how blockchain works in detail. Typically, an
end-to-end blockchain-based transaction needs to be validated at two different levels: the node
level and the block level. The transaction is first verified between two nodes (Zheng et al.,

DOI: 10.1002/cjs.11623 The Canadian Journal of Statistics / La revue canadienne de statistique
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1366 CHEN, WAN, CAI AND CHENG Vol. 49, No. 4

TABLE 1: Summary of articles in this article.

Model Application Article

Supervised/unsupervised
learning without
deep methods

Transaction entity
classification

Yin & Vatrapu (2017), Jourdan et al.
(2018), Akcora et al. (2020)

Bitcoin price prediction Jourdan et al. (2018), Shah & Zhang
(2014), Akcora et al. (2019), Abay et al.
(2019), Dey et al. (2020)

Supervised learning
with deep methods

Privacy and security
preservation

Harris & Waggoner (2019), Chen et al.
(2018), Zhu, Li & Yu (2019b)

Computational power
allocation

Luong et al. (2018)

Cryptocurrency power
prediction

McNally Roche & Caton (2018), Lahmiri
& Bekiros (2019), Alessandretti et al.
(2018)

Reinforcement
learning

IoT networks Liu, Lin & Wen (2018)

Bitcoin mining Eyal & Sirer (2014), Sapirshtein,
Sompolinsky & Zohar (2017), Wang,
Liew & Zhang (2019)

TABLE 2: Summary of some less relevant articles.

Area Exemplary sources

Healthcare Mamoshina et al. (2017), Juneja & Marefat (2018), Okalp et al. (2018), Zheng et al.
(2018a, 2018b), Firdaus et al. (2018), Wang et al. (2018), Vyas, Gupta & Yadav (2019),
Bhattacharya et al. (2019), Agbo, Mahmoud & Eklund (2019), Khezr et al. (2019).

IoT Related Liu, Lin & Wen (2018), Xiong & Xiong (2019), Lee & Ryu (2018), Qin et al. (2019),
Ozyilmaz, Dogan & Yurdakul (2018), Singla, Bose & Katariya (2018), Shen et al. (2019),
Li et al. (2019), Rathore, Pan & Park (2019), Ferrag & Maglaras (2020).

2018a, 2018b). Then, a unique digital signature, which is a hash wrapping all information of the
transaction, is created. The digital signature that represents the transaction is submitted to the
transaction pool and is waited to be added to a new block. Before the new block is accepted by
the blockchain network, it is required to be validated by other miners on the network through
the Proof-of-Work (PoW) consensus protocol. The PoW process includes aggregating a set of
transactions to the new block and finding a hash value, i.e., lower than a target value (Ghimire
& Selvaraj, 2018). The new block is only accepted by the network if the transactions are valid
and unspent. Other nodes continue working on creating the new block using the hash from the
previous block (Nakamoto, 2008).

Since the probability of finding a new, valid block is extremely low and the PoW process
requires a huge amount of computing power and a high consumption of electricity, miners
tend to collaborate with each other by forming mining pools. After participating in a mining
pool, individual miners could receive a steady reward and significantly lower the risk of not
getting any rewards constantly. On the other hand, mining pools usually charge membership fees

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11623
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TABLE 3: Comparison of three types of blockchains.

Attribute Public Private Consortium

Who runs/manages the
chain

All miners One organization/user Selected users

Nodes need permission
to access

No Yes Yes

Security Nearly impossible to fake Could be tampered with Could be tampered with

Efficiency Low High High

Centralized No Yes Partial

Example Bitcoin, Ethereum IBM HyperLedger Quorum

to each participant and allocate rewards to each miner according to their own reward-sharing
mechanisms (Bhaskar & Lee, 2015). Some common reward allocation mechanisms in practice
are Pay-Per-Last-N-Shares (PPLNS) (Qin, Yuan & Wang, 2019) and Full-Pay-Per-Share (Zhu
et al., 2019a). One popular public chain is Ethereum (Wood, 2014), which allows users to send
not only digital coins, but also smart contracts (Wohrer & Zdun, 2018). In order to reduce the
energy consumption required for validation, Ethereum plans to switch its consensus protocol
from PoW to Proof-of-Stake (PoS) gradually (Saleh, 2021).

3. SUPERVISED/UNSUPERVISED LEARNING WITHOUT DEEP METHODS

In this section, we review several applications of machine learning to blockchain. Specifically,
Section 3.1 reviews three studies regarding transaction entity classification (Yin & Vatrapu, 2017;
Jourdan et al., 2018; Akcora et al., 2020) with different purposes. One focuses on the recognition
of cybercriminal entities using supervised learning (Yin & Vatrapu, 2017) as well as topological
data analysis (TDA) (Akcora et al., 2020), while another focuses on the recognition of common
categories of entities for most transactions (Jourdan et al., 2018). Section 3.2 reviews Bitcoin
price prediction from different perspectives such as probabilistic graphical models (Jourdan
et al., 2018), Bayesian regression (Shah & Zhang, 2014), and feature selection on blockchain
topological structure using Granger causality and TDA (Akcora et al., 2019; Abay et al., 2019;
Dey et al., 2020).

3.1. Transaction Entity Classification
In a Bitcoin network, it is crucial to recognize entities behind potentially illegal nodes. The
study of identifying entities behind addresses of nodes is called address clustering (Harrigan
& Fretter, 2016). Yin & Vatrapu (2017) apply supervised learning to classify entities of
transactions that may involve cybercriminal activities. The classification model is trained using
854 observations with categorical identifiers and then applied to study 10,000 uncategorized
observations that comprise 31.62% of unique addresses and 28.99% of total coins in the overall
Bitcoin blockchain. The categorical identifiers represent 12 classes of entities, five of which
are related to cybercriminal activities. Thirteen classifiers from the Python machine learning
package “scikit-learn” are applied. By comparing the accuracy scores of all the classifiers, it is
found that random forests (77.38%), extremely randomized forests (76.47%), bagging (78.46%)
and gradient boosting (80.76%) stand out as the four best classifiers. After further comparing
the precision, recall, and F1 scores of these classifiers, bagging and gradient boosting stand out,
which are then both applied to analyze the 10,000 uncategorized observations. The classification

DOI: 10.1002/cjs.11623 The Canadian Journal of Statistics / La revue canadienne de statistique
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1368 CHEN, WAN, CAI AND CHENG Vol. 49, No. 4

TABLE 4: Classification performance (Jourdan et al., 2018).

Category Accuracy F1 Precision

Exchange 0.94 0.92 0.91

Gambling 0.95 0.97 1.00

Mining 0.50 0.67 1.00

Service 0.95 0.88 0.83

Overall 0.92 0.91 0.92

outcome suggests that 5.79% (3.16%) of addresses and 10.02% (1.45%) of coins are from
cybercriminal entities according to the bagging (gradient boosting) method.

Bitcoins have been found to be a common way to make ransomware payments. In order to
detect addresses related to ransomware payments, Akcora et al. (2020) apply TDA to generate a
Bitcoin address graph by grouping similar addresses into nodes and then representing common
addresses between two nodes as an edge. TDA is an approach commonly used for dimension
reduction. It represents the data set in a graph by first dividing data into sub-samples based on
different filtration criteria and then clustering similar points within each sub-sample. The Bitcoin
transaction graph model is a directed graph G = (V ,E,B), where V is the set of vertices, E is a
set of edges, and B = {Address,Transaction} is a set of node types. By using six graph features
extracted from each address, a TDA Mapper method is applied to create six filtered cluster tree
graphs. After calculating the number of ransomware addresses in each cluster, denoted as N, a
suspicion score is assigned to a new address. The suspicion scores of addresses in a cluster are
set to be 0 initially. A suspicion score is incremented by one if inclusion and size thresholds
are satisfied: (i) the inclusion threshold, denoted by 𝜖1, times the total number of labelled
ransomware addresses is less than N and (ii) the size threshold, denoted by 𝜖2, times the number
of labelled ransomware addresses in the cluster is greater than the number of all addresses in the
cluster. Suspicious addresses are then filtered by a quantile threshold, denoted by q, specifically
on whether their suspicion scores are higher than the quantile threshold. The result suggests that
the best TDA model, with 𝜖1 = 0.05, 𝜖2 = 0.35, and q = 0.7, outperforms random forest (RF),
and XGBoost models in new ransomware address identification.

Jourdan et al. (2018) classify entities of transactions into four most common cate-
gories—exchange, service, gambling, and mining pool, based on data collected from 97
sources (Ermilov, Panov & Yanovih, 2017). The goal of this classification task is to assist in
selecting an appropriate predictive model built on transaction category (Jourdan et al., 2018). The
applied classification method is a gradient boosted decision tree algorithm fit with a Gaussian
process-based optimization procedure for determining optimal hyperparameter values. Table 4
suggests that accuracy for the exchange, gambling, and service categories is high. However,
accuracy for the mining pool category is poor. This may indicate that mining activities may not
be appropriate as an independent label.

3.2. Bitcoin Price Prediction
Unspent transaction outputs (UTXOs) record the number of Bitcoins involved in a transaction and
enable the tracking of buying and selling information for the Bitcoin price prediction. Another
contribution of Jourdan et al. (2018) is the development of probabilistic graphical models
for forecasting the value of UTXOs. The first model is called the block-transaction address
model (BT-A), a stationary graphical model of a Bitcoin block with conditional dependence

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11623
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2021 BLOCKCHAIN REVIEW FOR STATISTICIANS 1369

TABLE 5: BT-A and BT-EA performance (Jourdan et al., 2018).

BE-TA BE-TA BE-TA BE-TA BT-A

Metric E S G M All

MSE 1.22 −0.30 −0.02 0.06 1.12

RMSE 125 53.3 1.15 5.19 90.5

MAE 15.6 0.94 0.20 2.42 7.47

RMAE 1.82 1.74 1.86 1.93 1.69

NRMSE 1.34 1.28 1.42 1.22 1.29

FIGURE 1: BT-A model (Jourdan et al., 2018).

structures. As an extension of the BT-A, a block-transaction entity-address model (BT-EA) adds
a categorical entity to each address. In terms of mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE), root mean absolute error (RMAE), the simulation
results in Table 5 suggest that this extension significantly outperforms the BT-A model in all
categories except for exchange.

The dependence structure of the BT-A model for predicting output UTXO value Vo,u is
illustrated in Figure 1. The BT-A model starts by computing the number of available UTXOs for
the ith input address Ai, denoted by kUTXO

Ai
. For each input address, the number of UTXOs used in

a transaction is uniform randomly drawn from {1, kUTXO
Ai

} with the corresponding UTXO value
denoted by Vi,u. The total input value of a transaction is calculated by summing the input UTXO
value of each input address, denoted by Vt =

∑
Vi,u. The value of an output UTXO is uniform

randomly drawn between one and the total transaction value minus the validation fee.
To predict Bitcoin price, Shah & Zhang (2014) apply Bayesian regression in a latent source

model, i.e., a nonparametric model for the binary classification of time series. The latent source

DOI: 10.1002/cjs.11623 The Canadian Journal of Statistics / La revue canadienne de statistique
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1370 CHEN, WAN, CAI AND CHENG Vol. 49, No. 4

model framework is described in Chen, Nikolov & Shah (2013) and Bresler, Chen & Shah (2014),
where the latent sources are time series with binary labels. Specifically, the model describes K
distinct, unknown latent sources, s1,… , sK generated from a latent distribution over {1,… ,K}
with probabilities {𝜇1,… , 𝜇k}, and K latent distributions, denoted by P1,… ,PK . Each labelled
data (x, y) is generated using a sample index T ∈ {1,… ,K} with P(T = k) = 𝜇k and x = sT + 𝜖,
where 𝜖 follows the Gaussian distribution and y is generated from ℝ as per PT . The model that
predicts y given x is

P(y|x) =
T∑

k=1

P(y|x,T = k)P(T = k|x)

=
T∑

k=1

Pk(y)exp
(
−1

2
‖x − sk‖2

2

)
𝜇k.

Due to a lack of information regarding latent parameters, empirical data are used as a proxy
for estimating P(y|x). The expectation of y|x can be estimated as

E[y|x] =
∑n

i=1 yi exp(− 1
4
‖x − xi‖2

2)∑n
i=1 exp(− 1

4
‖x − xi‖2

2)
. (1)

The future average price change is determined by price changes over three periods of
historical data: over the previous 30, 60, and 120 min. These price changes are denoted by Δp𝑗

for 𝑗 = 1, 2, 3. Each Δp𝑗 is calculated by Equation (1). Then, Δp over a 10s period is formulated
as

Δp = w0 +
3∑

𝑗=1

w𝑗Δp𝑗 + w4r, (2)

where w0,w1,w2,w3, and w4 are weights to be estimated and r = (vb − va)∕(vb + va), where vb
and va are the top 60 of total buying and selling volumes.

We would like to point out that in order to apply Equation (2), it is crucial to verify the
stationarity of the price data, which was unfortunately not done in the referenced article. The
trading strategy for each user is designed as “buy one Bitcoin when Δp > t, sell one Bitcoin
when Δp < −t, and otherwise hold the current number of Bitcoins when −t ≤ Δp ≤ t.” Here,
t is a pre-specified threshold. The designed prediction model is trained by data gathered from
Okcoin before May 2014 and is tested by data after that period. It is found that increasing t leads
to an increase in the average profit per trade.

Beside using Bayesian regression to predict Bitcoin price, the selection of input features
is also important to predictive performance. To better characterize input features, Akcora et
al. (2019) introduce the concept of a graph chainlet, which describes the local topological
features of a Bitcoin blockchain, and also explores the impacts of Bitcoin blockchain structure on
Bitcoin price formation and dynamics. A transaction-address graph representation of a Bitcoin
blockchain is shown in Figure 2. The circular vertices a1, a2, a3, a4, and a5 are addresses of
UTXOs, the square vertex represents a single transaction, and the edges denote UTXOs (a
transfer of Bitcoins). A chainlet model represents x input UTXOs and y output UTXOs involved
in a transaction, denoted by Cx→y. All chainlets and chainlet clusters formed by various criteria
are evaluated by the Granger causality test (Granger, 1969). The results suggest that the split
chainlet cluster defined by y < x < 20, individual chainlets (C1→7, C6→1, and C3→3), extreme
chainlets (C20→2, C20→3, C20→12, and C20→17), and clusters defined by cosine similarity (C9→11,
C3→17, C8→14, and C1→1) are significant in Bitcoin price formation and dynamics. A price
prediction model is further developed using significant chainlets.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11623
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FIGURE 2: A transaction-address graph.

Chainlet models study the topological features of a single transaction and only take the
number of input and output UTXOs into account. Abay et al. (2019) extend the chainlet
model to a new graphical model, ChainNet, that further considers topological features based
on the number of distinct chainlets and the amount of coins transferred by the chainlets. More
specifically, from the perspective of all transactions, an occurrence matrix is created to count
the number of transactions between distinct chainlets. An amount matrix records the sum of
Bitcoins transferred between distinct chainlets. By considering both the occurrence and the
amount of Bitcoins transferred in a transaction, an 𝜖-threshold occurrence matrix, denoted by
O𝜖, 𝜖 ∈ {0, 10, 20, 30, 40, 50}, is created to count the number of distinct chainlets larger than 𝜖.
Different thresholds result in different values of O𝜖 , which are considered as filtration features
inputs in the predictive model. Betti sequences and Betti derivatives for the blockchain network
are also considered as features in the model. A sliding prediction approach associated with
parameters controlling the prediction horizon, window length, and training length is applied to
train the time series predictive model. According to simulation results, ChainNet’s adoption of
Betti model features and filtration features for short- and long-term prediction results in better
performance.

Beside considering the effects of features of the Bitcoin network’s topological structure on
Bitcoin price formation and dynamics, topological features of other types of cryptocurrencies
may also affect Bitcoin price. Dey et al. (2020) evaluate Bitcoin price formation and dynamics
using the chainlet model and joint topological features of Bitcoin and Litecoin. Specifically, the
occurrence of distinct chainlets in Bitcoin and Litecoin networks, denoted by OB

x→y and OL
x→y,

respectively, are considered. The amount of coins transferred in Bitcoin and Litecoin, denoted
by AB

x→y and AL
x→y, respectively, are also included. Granger causality tests (Granger, 1969) with

one to five lag effects are applied to assess chainlet significance. The results suggest that the
occurrence of chainlets in the Litecoin network (OL

3→3, OL
4→4, OL

4→5, and OL
3→6) is significant to

Bitcoin price for all five lag effects based on Granger causality. Also, the occurrence and value
of chainlets in the Bitcoin network (OB

20→2,3,12, OB
1→7, AB

20→12,20, and AB
3→4) are also important to

Bitcoin price for all five lag effects.
Although there are other studies related to Bitcoin price prediction using machine learning

methods, e.g., Greaves & Au (2015), Jiang & Liang (2017), Jang & Lee (2018), and Sun, Liu &
Sima (2020), it is not feasible to include all these articles in this article. We move on to review
more articles related to the prediction of cryptocurrency price using deep learning in Section 4.

4. SUPERVISED LEARNING WITH DEEP METHODS

In this section, we turn to the application of deep learning. In Section 4.1, three privacy-preserving
collaborative learning frameworks (Harris & Waggoner 2019; Chen et al., 2018; Zhu, Li & Yu,
2019b) are reviewed. In Section 4.2, we review a deep learning approach (Luong et al., 2018)

DOI: 10.1002/cjs.11623 The Canadian Journal of Statistics / La revue canadienne de statistique
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that allocates computational resources to assist mobile blockchain mining. In Section 4.3, we
focus on cryptocurrency price prediction (McNally, Roche & Caton, 2018; Lahmiri & Bekiros,
2019) and digital portfolio management using recurrent neural network (RNN) and long-short
term memory (LSTM) models (Alessandretti et al., 2018).

4.1. Decentralized, Privacy-Preserving Collaborative Learning
Harris & Waggoner (2019) build a decentralized collaborative learning framework with
blockchain. This new framework extends two previous frameworks (Abernethy & Frongillo,
2011; Waggoner, Frongillo & Abernethy, 2015) and is designed to collaboratively build a data
set and train a predictive model. The framework starts by letting the provider define a loss
function and upload 10 out of 100 partial data sets with corresponding hashes. By using a smart
contract that initially contains a model, other participants add their own data or upload an update
along with a deposit of one unit of currency, kept until an end condition set by the provider is
met. The provider uploads the remaining 90 partial data sets to evaluate participants’ models.
The better model tends to receive more rewards in the end.

Chen et al. (2018) propose a framework called learning chain to preserve users’ privacy
by applying a decentralized version of the stochastic gradient descent (SGD) algorithm and
a differential privacy mechanism. The proposed framework contains three phases: blockchain
initialization, local gradient computation, and global gradient aggregation. In the first phase,
a peer-to-peer network is set up with computing nodes and data holders. The second phase
involves each data holder Pk retrieving the current model from the block t, denoted by wt,
and computing its own local gradient. A differential privacy mechanism is then applied to
generate a hidden local gradient, denoted by ∇gk(wt)∗, by adding a noise factor to the local
gradient. The message broadcasts a pseudo-identity of Pk and a normalized, hidden, local
gradient, denoted by ∇ĝk(wt)∗, together with the norm of its unnormalized version, to computing
nodes on the network. In the final phase, after solving a PoW problem, the winning node
selects top l-nearest local normalized gradients according to the cosine distance between each
normalized local gradient and the sum of the ∇gk(wt)∗s to update the global gradient. The
predictive model is updated as wt+1 = wt + 𝜂∇J(wt), where ∇J(wt) is the updated global
gradient.

Learning chain is trained and tested using three different data sets: a synthetic data set, a
Wisconsin breast cancer data set, the MNIST data set, and the Ethereum blockchain framework.
There exists a trade-off between privacy and accuracy in the sense that decreasing the privacy
budget leads to an increase in test errors on all data sets. The proposed model is further compared
with the learning chainEX model, i.e., implemented with a lower privacy budget. The similar
test error between learning chain and learning chainEX suggests the differential privacy scheme
in learning chainEX is effective and efficient.

Zhu, Li & Yu (2019b) develop a blockchain-based privacy-preserving framework to secure a
share of updates in federated learning. The federated learning algorithm, developed by McMahan
et al. (2016), allows each mobile device to compute and upload updates to the global predictive
model based on their local data set. A security issue arises in federated learning when there
exist Byzantine devices on the network. In this case, a blockchain transaction mechanism is
adopted to ensure the security of sharing and updating. Specifically, model updates are written
in a blockchain transaction. A transaction that contains the information including changes to
hyperparameters and weights and public keys (participants’ addresses) broadcasts to other nodes.
Then, other nodes can validate the transaction and test updates according to their local data sets.
If most nodes confirm that the performance score of the updated model is higher than that of
the existing model under their local data sets, then the updates are implemented into the current
model.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11623
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4.2. Computing Power Allocation
Luong et al. (2018) develop a deep learning-based auction algorithm for edge computing resource
allocation to support mobile mining activities. The designed framework enables mobile device
miners to submit their bid valuation profiles to one edge computing service provider (ECSP)
for buying additional computing power. The valuation profile for miner i, denoted by vi, is
drawn from a distribution that assigns a higher value vi when its block size, divided by its
initial computing capacity, is larger. The ECSP evaluates all valuation profiles and maximizes
its revenue in the following steps.

An allocation rule is applied to map transformed valuation profiles, defined as vi = 𝜙i(vi),
to assignment probabilities using a softmax function. The winner miner i will pay the price
pi = 𝜙−1

i (ReLU(maxi≠𝑗 v𝑗)). In the end, ECSP loss function is defined as

R̂(w, 𝛽) = −
N∑

i=1

g(w,𝜷)
i (vs)p(w,𝜷)

i (vs),

to which SGD is applied. Here, gi is the assignment probability and N is the number of
miners. This deep learning-based auction mechanism is empirically compared to a regular
auction mechanism. It is found that the deep learning-based auction achieves higher revenue and
converges to an optimal value faster than other mechanisms.

4.3. Cryptocurrency Price Prediction
For forecasting Bitcoin price, McNally, Roche & Caton (2018) compare the performances of two
deep learning algorithms, i.e., an RNN and an LSTM. It is interesting to note that two hidden
layers with 20 nodes per layer are sufficient in both models. Specifically, the RNN model adopts
the tanh function as its activation function, while the LSTM applies tanh and sigmoid functions
for different gates, which results in a longer training time. The data set used to train and test the
LSTM and RNN models contains Bitcoin prices from August 2013 to July 2016. Features used
in the model include the opening price, daily high, daily low, closing price, hash rate, and mining
difficulty. Feature importance is evaluated by the Boruta algorithm, which is a wrapper built
around the RF classification algorithm. A traditional autoregressive integrated moving average
(ARIMA) time series model is empirically compared with these deep learning models. The
simulation results suggest that the LSTM, RNN, and ARIMA models have similar accuracies, at
52.78%, 50.25%, and 50.05%, respectively. However, the deep learning models have much lower
RMSE values. In addition, the LSTM model is capable of recognizing long-term dependencies,
in contrast to the RNN model.

In contrast with other studies for predictive models, Lahmiri & Bekiros (2019) instead
conduct a chaotic time series analysis before building deep learning models. Hence, the first
step is to calculate the largest Lyapunov exponent (LLE) and then apply detrended fluctuation
analysis to detect chaotic characteristics of the cryptocurrency price data without the assumption
of stationarity. Then, a deep neural network model with an LSTM implementation (Hochreiter
& Schmidhuber, 1997) (DLNN) and a generalized regression neural network (GRNN) model
(Specht, 1991) are built to predict the price of three cryptocurrencies: Bitcoin, Digital Cash,
and Ripple. The number of data samples obtained for the model is 3,006, 1,704, and 1,357 for
Bitcoin, Digital Cash, and Ripple, respectively. The authors create a many-to-many sequence
predictive model, which utilizes the first 90% of the observations for training and the last 10%
of the observations for testing and out-of-sample forecasting. According to Table 6 and Figure 3,
whose x-axis represents the time horizon and the y-axis represents the price, the positive Hurst
exponent indicates the presence of long-term features in the data and the negative LLE indicates
that the training data is chaotic. As a result, a short-term predictive model would be suitable for
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1374 CHEN, WAN, CAI AND CHENG Vol. 49, No. 4

TABLE 6: Chaotic analysis (Lahmiri & Bekiros, 2019).

LLE HE

Training sub-sample Testing sub-sample Training sub-sample Test sub-sample

Bitcoin 0.1250 −7.8711 1.0087 0.9776

Digital cash 0.3205 −10.7333 0.9559 1.0901

Ripple 0.8181 −0.0065 1.0741 0.8715

FIGURE 3: Prediction results (Lahmiri & Bekiros, 2019).

the data. The simulation results suggest that the LSTM model outperforms the GRNN model in
predicting all three cryptocurrency prices. Although the RMSE of the LSTM model is still high,
the model demonstrates a trend similar to real price changes for all three cryptocurrencies.

Beside cryptocurrency price prediction, Alessandertti et al. (2018) explore a portfolio analysis
by forecasting daily prices of 1,681 types of cryptocurrencies. Three models are developed to
predict the price of every kind of cryptocurrency. For each type c, the target is the return of
investment at each time ti ∈ {0,… , 895}, expressed as

ROI(c, ti) =
price(c, ti) − price(c, ti − 1)

price(c, ti − 1)
.

The features considered are price, market capitalization, market share, rank, and volume.
The first model is an ensemble of regression trees fit using XGboost and pairs the features and
prices of each type of cryptocurrency. The second model is a regression model that considers
features of all kinds of cryptocurrency as a whole, paired with prices of each type of cryptocur-
rency. The third model adopts an RNN with an LSTM implementation and uses the second
model’s feature-target paring strategy. All models are developed for one-step ahead forecasting.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11623
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2021 BLOCKCHAIN REVIEW FOR STATISTICIANS 1375

A portfolio is constructed based on the predicted prices. Model hyperparameters are optimized
by maximizing either the sharp ratio or the geometric mean of total returns. The results suggest
that all three models generate profits, and that optimization using the sharp ratio metric achieves
a higher return. Another conclusion is that the first two models, implementing gradient boosting
with decision trees, have higher accuracy in the short-term (5–10 days), while the third model
adopting LSTM has better predictive performance in the long term (around 50 days).

5. REINFORCEMENT LEARNING

In this section, we first review a framework that incorporates reinforcement learning into
blockchain to ensure the security of data collection, storage, and processing in an IoT network
(Liu, Lin & Wen, 2018). Second, we review two types of frameworks that study Bitcoin
blockchain mining activities. The first explores the potential of Bitcoin mining through mobile
networks (Nguyen et al., 2020), while the second formulates a Markov decision process (MDP)
for modelling blockchain mining activity (Eyal & Sirer, 2014; Sapirshtein, Sompolinsky & Zohar
2017). The last work in this article applies a new reinforcement learning algorithm to find an
optimal mining strategy (Wang, Liew & Zhang, 2019).

5.1. Internet of Things
Liu, Lin & Wen (2018) propose a framework to secure data collection and sharing among
mobile terminals (MTs) on an IoT network. The framework consists of two phases: data
collection and data sharing. In the first phase, each MT, denoted by m, adopts multi-agent
deep reinforcement learning to maximize the efficacy of data collection. The state space is
defined as S = {S1, S2, S3}. Here, S1 = {(xk, yk), (xc, yc)} is a set of states representing the
coordinates of k point of interest (PoIs) and c obstacles in the environment. The environment is
a map of size Ex × Ey, where x ∈ [0,Ex], y ∈ [0,Ey]. S2 contains the MTs’ coordinates; and S3
represents the sensing time ht(k) ∈ [0, t] for the k PoI. The action space consists of a movement
direction, denoted by 𝜃m

t , and a movement distance, denoted by lmt . Thus, the action space is
A = {(𝜃m

t , l
m
t ) ∣ 𝜃

m
t ∈ [0, 2𝜋), lmt ∈ [0, lmax)}. The reward rm

t is

rm
t =

wtb
m
t

𝛼bm
t + 𝜅lmt

,

where bm
t is the amount of collected data; 𝛼 and 𝜅 are the energy consumption per collected

data and per unit distance travelled; and wt is the achieved geographic fairness, calculated by

wt =
(
∑K

k=1 ht(k))2

k
∑K

k=1 ht(k)2
. Each MT is implemented by four deep neural networks and an actor-critic

algorithm is applied to maximize the reward.
After the MTs finish data collection, they share the data through an Ethereum blockchain

network. Before this, the data are sent to a certificate authority (CA) for verification. Once the
CA verifies the ownership of the MTs’ data and checks the consistency of the received data with
the original data, a digital signature is generated and sent back to the MTs. As a result, each MT is
able to broadcast its transaction request consisting of the digital signature from CA, the original
data, and MT’s public key to other nodes on the blockchain network to be further validated.
Relative to randomly moving MTs, the MTs implementing deep reinforcement learning collect
much more data but consume more energy. The blockchain-based data sharing framework can
still store all the data sent by the MTs even under a denial-of-service attack.

5.2. Bitcoin Mining
As discussed in earlier sections, blockchain mining requires a huge amount of computing
power, so it is nearly impossible to apply blockchain to a mobile system. Nguyen et al. (2020)
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1376 CHEN, WAN, CAI AND CHENG Vol. 49, No. 4

propose a mobile edge computing (MEC)-based blockchain network to assist mobile users
(MUs) offloading mining tasks to a MEC server. Specifically, the state space is defined as
st = {Dt

1,D
t
0, g

t}, where Dt
1 and Dt

0 are new and buffered transaction data at time t, respectively,
and gt is the power gained when a miner n offloads a task m to the MEC server. The action
space is expressed as at = xt

nm, where xt
nm ∈ {0, 1} indicates whether the nth MU processes m

mining tasks locally or offloads the m tasks to the MEC server, respectively. The goal of a miner
is to maximize the privacy level Pt, defined in He et al. (2017), and minimize the total cost of
energy and time consumption. The system reward is formulated as rt(s, a) = Pt(s, a) − Ct(s, a),
where P(s, a) is the privacy level and C(s, a) is the total cost of electricity and computing power.
A value-based method, Q-learning, and deep Q learning are applied to update the Q value. The
results suggest that, although the convergence speed for Q-learning and deep Q learning are
almost the same, agents trained by deep Q learning receive higher total rewards.

Although the mining and selling of Bitcoins could generate a large revenue, the cost of
mining is also high due to the high consumption of electricity. There is now interest in finding an
optimal mining strategy to maximize profits. Since Bitcoin mining can be modelled as a Markov
decision process (MDP) that contains an enormous number of states, reinforcement learning can
be applied to study this MDP. An MDP for Bitcoin mining was first proposed in Eyal & Sirer
(2014) and extended in Sapirshtein, Sompolinsky & Zohar (2017). The environment assumes that
the block generation times independently follow a Poisson distribution. A new block is created
by an honest agent with probability 1 − 𝛼 while a new block is obtained by an adversarial agent,
also known as an attacker, with probability 𝛼. The adversary may hide some blocks on its own
private chain, but the blockchain is always the longest public chain. The state space of the MDP
is defined as (a, h, fork), where a represents the number of blocks on the adversary’s private
chain; h represents the number of blocks on the public chain; fork is an environment variable
that has three values, one of {irrelevant, relevant, active}. The state (a, h, irrelevant) denotes the
case when the previous state is (a − 1, h) and the match action is feasible, i.e., the last mined
block accepted by the chain was mined by the adversary; (a, h, relevant) denotes the case when
previous state is (a, h − 1) and the match action is infeasible, i.e., the last mined block was mined
by the honest miner; and the active refers to the case that the network is broken into two branches
containing the same number of blocks. When fork = active, the probability that the next block
is generated from the honest block is 𝛾 and the probability that the next book is generated from
the adversarial block is 1 − 𝛾 . The action space, defined as A = {adopt, override,match,wait},
contains four actions. The adopt action refers to an agent always mining the last block on the
public chain without any blocks on its private chain. The override action becomes feasible when
the number of blocks on the private chain is more than the number of blocks on the public chain.
In other words, all blocks on the private chain are published to replace the existing public chain.
The match action refers to the adversary releasing the same number of blocks as the current
public chain, which creates a fork on the public chain. The wait action, where the adversary
keeps mining on its private chain without releasing any new blocks to the public chain, is always
feasible. The transition probability and reward matrices are shown in Table 7. Since the honest
agent is considered as a part of the environment, the focus is on finding an optimal strategy
for adversarial agents. The number of blocks on the public chain is considered as a reward.
The reward is formulated in two dimensions: the number of blocks mined by honest agents and
adversarial agents, respectively. The reward function then considers a relative reward instead of
an absolute reward. The objective function is

𝑓 (s, a) =
qa(s, a)

qa(s, a) + qh(s, a)
. (3)

Wang, Liew & Zhang (2019) plan to apply off-policy Q-learning to solve this problem.
Unfortunately, the reason why Q-learning is used there is not mentioned in the original article.
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TABLE 7: The state transitions and reward matrices (Sapirshtein, Sompolinsky & Zohar, 2017).

State at time t, action State at time t + 1 Transition probability Reward

(a, h, ⋅), adopt
(1, 0, irrelevant) 𝛼 (0, h)

(0, 1, irrelevant) 1 − 𝛼 (0, h)

(a, h, ⋅), override
(a − h, 0, irrelevant) 𝛼 (h + 1, 0)

(a − h − 1, 1, relevant) 1 − 𝛼 (h + 1, 0)

(a, h, irrelevant),wait (a, h, relevant),wait
(a + 1, h, irrelevant) 𝛼 (0, 0)

(a, h + 1, relevant) 1 − 𝛼 (0, 0)

(a, h, active),wait (a, h, relevant),match

(a + 1, h, active) 𝛼 (0, 0)

(a − h, 1, relevant) 𝛾 (̇1 − 𝛼) (h, 0)

(a, h + 1, relevant) (1 − 𝛾)(̇1 − 𝛼) (0, 0)

Since Q-learning can only optimize a linear reward function, the authors propose a new
multi-dimensional RL algorithm based on off-policy Q-learning. The new algorithm considers
two Q-functions, i.e., a pair (Q(a)(s, a),Q(h)(s, a)). At each time step, the adversarial agent
observes (st+1, r

a
t+1, r

h
t+1) from the environment. The two Q-functions are then updated

q(a)(st, at) ← (1 − 𝛽)q(a)(st, at) + 𝛽[(r(a)t+1 + 𝜆q(a)(st+1, a
′)]

and

q(h)(st, at) ← (1 − 𝛽)q(h)(st, at) + 𝛽[(r(h)t+1 + 𝜆q(h)(st+1, a
′)],

where 𝛽 ∈ (0, 1) is the learning rate, 𝜆 is a number close to one, and a′ = argmaxa𝑓 (st+1, a).
The current best action is chosen by the 𝜖-greedy strategy to maximize the objective function
in Equation (3) with probability 1 − 𝜖. A random action is chosen with probability 𝜖. Random
selection is used to avoid trapping at local maximums. The parameter 𝜖 is determined by
𝜖(st) = exp

(
−V(st)

T𝜖

)
, where V(st) is the number of times that the state was visited and T𝜖 controls

the rate at which 𝜖 is reduced.
Sensitivity analysis is applied to evaluate the estimated optimal strategy. The simulation

result is shown in Figure 4. After setting the discount factor to one, the article suggests that their
optimal mining strategy outperforms the mining strategies presented in Eyal & Sirer (2014) and
Sapirshtein, Sompolinsky & Zohar (2017).

6. CONCLUSION AND FUTURE CHALLENGES

In this article, we reviewed applications of blockchain to databases to improve user pri-
vacy in the learning process and uses of machine learning to optimize computer resource
allocation or cryptocurrency investment decisions. The majority of these applications can be
categorized as applying one technique to another, but few actually integrate two technologies.
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FIGURE 4: Simulation result for different mining strategies (Wang, Liew & Zhang, 2019).

Hence, it is fair to say that current research is still very preliminary from an interdisciplinary
perspective.

However, we expect new lines of research to emerge in the following areas.

• “Smart agents” can be designed to regulate the blockchain and detect abnormal behaviours.
The former is especially important for consortium and private chains that require coordination
among users, while the latter is critical for public chains.

• Learning-based analyses of blockchain-based systems are rare. From financial systems to
supply chains, there is an enormous amount of data available to evaluate the performance
of the decentralized structure of the blockchain relative to traditional, centralized structures.
Learning-based analysis can shed light on mechanism design for blockchain structures and
provide on-time forecasting models.

• Blockchain allows anonymous data sharing. With the development of IoT and wearable devices,
privacy issues are catching the attention of more and more users. Through combinations with
data fusion, multiple-layer blockchain structures that allow the sophisticated authorization of
data for different users can be designed.

• Blockchain mining activity can be modelled as an MDP. Although a few works exist related
to finding optimal mining strategies using single-agent reinforcement learning in reality,
individual mining is not as popular as pool mining. Specifically, miners collaborate and
compete with each other to mine blocks. Multi-agent reinforcement learning setting mixing
collaborative and competitive agents is more suitable for modelling complex pool mining
activity and can help miners find optimal mining strategies in the future.

• Cryptocurrency plays an important role, especially in public chains. Different chains have
their own unique cryptocurrencies. Cryptocurrency and cryptocurrency portfolios are now an
investment option similar to other financial products. Some works have studied cryptocurrency

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11623
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price prediction using supervised learning techniques, but only a few explore the potentials
of RL or deep RL. In many cases, RL and deep RL perform better in financial forecasting,
e.g., for stock market prediction, due to the reason that historical data cannot reflect the
dynamic market. We expect that more works adopting RL, deep RL, or inverse RL to study
the investment return of cryptocurrencies will emerge soon.
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